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Abstract 
The embedding of one interconnection network into 

another is a very important issue in the design and analysis 
of parallel algorithms. Through such embeddings the algo- 
rithms originally developed for one architecture can be 
directly mapped to another architecture. This paper 
describes novel methods for the embedding of hierarchical 
interconnection networks in the hypercube to minimize the 
dilation and the expansion costs, and mathematically 
proves their optimality. To the best of our knowledge, this 
is the first result on embedding hierarchical networks into 
the hypercube. Thus, this embedding has significant prac- 
tical importance in enhancing the capabilities of the hyper- 
cube since hierarchically constructed networks have 
proven to be very cost-effective in a wide range of applica- 
tions, and are considered as the future generation topolo- 
gies for massively parallel computer systems. 

Keywords: Embedding, Hypercube, Hierarchical Net- 
works, Dilation. 

The hypercube is one of the most versatile and effi- 
cient interconnection networks yet discovered for parallel 
computation. One of the biggest reasons for the popularity 
of the hypercube is its ability to efficiently embed many 
parallel architectures. There is a lot of motivation behind 
embedding other parallel architectures. First, efficient par- 
allel algorithms may exist for some architecture which suit 
the needs of these algorithms perfectly, and we may wish 
to implement these algorithms on the hypercube. Second, 
the proof of embedding for an architecture is also a proof 
for all algorithms to be implemented in the hypercube 
architecture, with a level of efficiency determined only by 
the cost associated with the embedding. Further, since the 
embedded architecture is usually easier to understand and 
visualize, it is often easier to design algorithms for the 
simpler architecture. In this sense, the embedded architec- 
ture can be considered an abstraction from the hypercube, 
where the irrelevant connections are masked out. Finally, 
embedded architectures can be considered as parallel data 
structures for parallel architectures. The embedding 

method shows the way to implement these data structures 
on the hypercube parallel computer. 

For example, most of the matrix algorithms devel- 
oped for the hypercube use a mesh connected abstraction 
even though they may take advantage of other hypercube 
connections. As a result, algorithm development is simpli- 
fied by focusing on the connections in the mesh architec- 
ture. It is well known that multidimensional meshes of 
suitable dimensions can be embedded in the hypercube 
without loss of adjacency properties [l]. Therefore a 
hypercube architecture can simulate the mesh architecture 
with constant overhead. For the above reasons a lot of 
research has been carried on embedding different topolo- 
gies into the hypercube. The complete two-rooted binary 
tree of size 2n has been shown to be embeddable in the n- 
dimensional hypercube while preserving the adjacency 
properties [SI. Hence, a hypercube architecture can also 
provide a binary tree abstraction when it is more suitable 
for an algorithm. Also, it has been shown that the pyramid 
architecture can be efficiently embedded into the hyper- 
cube [7]. Thus, a hypercube can provide a multi-resolution 
abstraction when it is desired for an algorithm. 

Despite the popularity and the efficiency of the 
hypercube, it is relatively expensive to built such a parallel 
architecture because of the big number of links connected 
to each of its nodes. For this reason, many researchers 
have proposed hierarchical interconnection networks as an 
alternative to the hypercube [2, 3, 4, 5, 61. Most of these 
interconnection networks are constructed by connecting a 
number of clusters, where a cluster is a hypercube of small 
dimension, with another interconnection network. These 
interconnection networks are shown to require less hard- 
ware than the hypercube, yet their performance 
approaches that of the hypercube. In this paper, we present 
an optimal embedding of these hierarchical interconnec- 
tion networks into the hypercube. All of the proposed hier- 
archical interconnection networks are closely related to 
each other. However, in this paper, we will concentrate on 
the hierarchical interconnection networks proposed in [2, 
3, 41. But the results found in this paper can be easily 
extended to the other hierarchical interconnection net- 
works. These hierarchical interconnection networks are 
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shown to lend themselves to efficient parallel computa- 
tions ranging from numerical algorithms to image process- 
ing algorithms and, thus, can be a good abstraction for the 
hypercube. 

This paper is organized as follows. Section 2 presents 
the notations used in this paper and intxoduces the hierar- 
chical networks. Section 3 presents the optimal embedding 
of the hierarchical networks into the hypercube. Finally, in 
Section 4, we give some concluding remarks. 

2. Notations And Terminologies 
The problem of embedding some guest graph G = 

{ V,, E G }  into a host graph H = { V,, E H }  is to find a one- 
to-one function g: V,  + VH Dilation cost of embed- 
ding is max {&(U) ,  AV)); (U, v) E E G } ,  i.e., the longest 
distance between the images of the adjacent vertices of G. 
The embedding is adjacency preserving if dilation off  is 
equal to 1. Expansion cost is defined as the ratio IVHi I 
IVGI. If dilation cost is minimum and expansion cost is 
minimum, then the embedding is optimum. Thus, the pur- 
pose of the embedding would be to minimize the dilation 
cost and the expansion cost. Minimizing dilation cost 
leads to the minimization of the degradation in time per- 
formance emulating the guest architecture, and minimiz- 
ing expansion cost leads to the minimization of the 
hardware needed by the host architecture to emulate the 
guest architecture. 

The guest graph, G, to be embedded into the host 
graph, H ,  (i.e. hypercube) is a hierarchical hypercube net- 
work, denoted HHN. A HHN is constructed by systemati- 
cally connecting a number of clusters together, where a 
cluster is hypercube graph (network). A HHN is character- 
ized by the number of nodes (vertices) in the hypercube 
cluster, NQ. It is constructed by fully interconnecting NQ 
hypercube clusters, creating a fully interconnected graph 
of hypercube clusters, with a total of Ne2  vertices. Each 
vertex in a HHN is labelled by an n-bit binary string i j  (in 
our embedding it will be denoted by the pair (i, j ) ) ,  where 
the n12 most significant bits, i, is the label of the hypercube 
cluster that this vertex belong to, and the least significant 
n12 bits, j ,  are vertex labels within the cluster. The edges 
between these hypercube clusters are formed by connect- 
ing vertex i j  to vertex j i  for all i and j ,  with i # j .  These 
edges will be termed diagonal connections in our embed- 
ding. The rest of the edges will be termed horizontal con- 
nections in our embedding. Fig. 1 shows a HHN where the 
hypercube cluster has four vertices. 

The binary n-cube (hypercube) which is the host 
graph, H ,  is a special case of a family of r-ary m-cubes. It 

the total number of nodes. Consider 
has n dimensions and Y nodes on each dimension. Let N be 

N = r" = 2'" or m = log2 N. 

I I 

Fig. 1. A labelled HHN graph with 16 vertices. 

Denote by (eo, el, ... , e,-l), 0 < ei < r, the nodes of a 
r-ary m-cube. Two nodes e and e' are adjacent if 

e = (eo, e l ,  ... , ... , ei, ... ,e,_l) 

e' = (eo, e l ,  ... , ... , ei rtr mod I ;  ... ,em.l) 
Consider the nodes of H 

0, 1, 2, ... , 2n-' 
in their binary representation 

00 ... 00, 00 ... 01, ... , 11 ... 10, 11 ... 11 
This is shown graphically in Fig. 2 for a hypercube of size 
16. 

Fig. 2. A labelled hypercube graph with 16 vertices. 

3. Embedding of HHN Into the Hypercube 
A straight forward way of embedding a HHN into the 

hypercube is by mapping the nodes of the HHN to the 
nodes hypercube where their indices are the same, as sug- 
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gested by some researchers [3, 91. However, the dilation 
cost would be 10g2(N) for a network of size N (e.g. nodes 
0011 and 1100 in Fig. 1 are directly connected in a HHN, 
but are at a distance 10g2(16) = 4 from each other on the 
hypercube of Fig. 2). Thus, the dilation cost would be 4 in 
this case). Hence, the purpose of this paper is to present 
novel techniques employing recursive schemes that enable 
the embedding of a HHN into a hypercube of the same 
size with dilation cost 2 and expansion cost 1. 

Let us arrange these numbers in an m-dimensional 
matrix r x r x ... x r, denoted by T(r, m). The elements of 
T(r, m) are binary numbers of m logr bits each. Consider 
the case of m = 2 and, for simplicity, write T(r) instead of 
T(r, 2). The nodes of the binary n-cube are laid out in a 
square r x r matrix denoted by 

'01 . ' .  r -  1 

where 0 5 i, j < r, r = 2n'2 and each tu is a binary number of 
n = m logr bits. To embed the graph G into H ,  we use the 
following mapping g:  

node ( i ,  j )  of G 3 node t . .  of H 
ZJ 

Denote by OOT(r) = (to) where t 'u = OOtb that is 00 
followed by the bits of tu. In other words, OOT(r) is the 
matrix T(r) followed by 00 in front of their elements. 

OOtOO ... OOtO,  r -  1 

Analogously we have OlT(r), 10T(r) and 11T(r). The bits 
that precede T(r) are said to be concatenated to T(r). 

Definition 1: We define T(r )  by means of the following 
recurrence: 

T ( 2 )  = 1'""'1 
00 11 

where TT(r) is the transpose of T(r). Fig. 3 is obtained 
directly from the definition of T(r).  As can be seen the 
maximum Hamming distance between any two directly 

Fig. 3. Layout of the binary hypercube by T(4). 

connected nodes is equal to 2. 
Theorem 2: Let G be an HHN and let H be a binary n- 
cube of the same size. With the definition of T(r) and using 
the mapping 

node ( i , j )  of G -+ node t . .  of H 

we have an embedding of G into H of dilation 2, that is, 
adjacent nodes of G are mapped to nodes which are at 
most 2 links away in H. 

Proof: By induction on r. 
For r = 2, 

LJ 

r 7 

lo1 - 10 01 
T ( 2 )  = ltlO t l j  - [oo 111 

The pairs of elements of T(2), horizontal and diagonal (as 
in the HHN connections), have a maximum dilation of 2 
which is between the nodes labeled 10 and 01, and the 
nodes labeled 00 and 11. 

Assume valid the theorem for r/2. It is not difficult to 
show that the theorem holds for T(r). By the induction 
hypothesis, the maximum Hamming distance (represent- 
ing dilation in this case) horizontally between 10T(r/2) and 
OlT(d2) is obviously equal to 2 since the only difference 
between them is in their most significant 2 bits. Analo- 
gously, the Hamming distance horizontally between 
00TT(r/2) and 11TT(r/2) is also equal to 2. Further, the 
Hamming distance between the directly connected nodes 
in OlT(r/2) and 00TT(r/2) (i.e. diagonal connections) is 1 
since it is exactly equivalent to horizontal connection 
between OlT(r/2) and OOT(r/2). 

Lastly, we should also prove that the directly con- 
nected nodes in TT(r/2) have a maximum Hamming Dis- 
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tance of 2. We also prove this by induction on r. 
For r = 2. 

T T ( 2 )  = looj 
01 1 1  

The pairs of elements of TT(2) have a maximum Hamming 
distance of 1 between the directly connected nodes (which 
is horizontally). That is between nodes 10 and 00 and 
between nodes 01 and 11. Assume the induction is valid 
for TT(r/2). and let us prove it is valid for TT(r). 

r 1 

The connections between the nodes directly con- 
nected (i.e. diagonally) in the quadrant OOT(r/2) and 
01TT(r/2) have a Hamming distance of 1 since the differ- 
ences between any two directly connected nodes is in the 
most significant 2 bits (i.e. either 00 or 01). We should also 
prove that the Hamming distance between the nodes 
directly connected (i.e. horizontally) between the quad- 
rants 10TT(r/2) and OOT(r/2) and between 01TT(r/2) and 
11T(r/2) is less than or equal to 2. In other words, we 
should prove that the Hamming distance between TT(r/2) 
and T(r/2) is 1 which is clearly the case. Thus, the nodes 
directly connected in TT(r/2) have a Hamming distance of 
at most 2. 

Consequently, a HHN can be embedded into a binary 
hypercube with a maximum dilation of 2 which is the opti- 
mal case because any embedding of the HHN into the 
hypercube must have a maximum dilation greater that 1 
since it contains odd cycles [ lo ,  111. Moreover, since the 
number of nodes in the hypercube and the HHN are the 
same, the expansion cost is also optimal. This leads to the 
following corollary. 

Corollary 3: The embedding of the HHN into the 
binary hypercube has maximum dilation equal to 2, and 
expansion cost equal to 1, and is optimal. 

4. Conclusion 
In this paper, we considered the problem of embed- 

ding hierarchical networks into the binary hypercube. A 
natural embedding method where nodes of the same indi- 
ces are embedded on each other would lead to a dilation of 
log(N) for a network of size N .  In this paper, however, we 
presented a more efficient embedding method. The pro- 
posed embedding is based on a recursive function. Once 
the nodes of the binary hypercube are laid out according to 
the given recursion, then it structures itself optimally in 

embedding the HHN which contains horizontal and diago- 
nal connections. We obtained a dilation of 2 and an expan- 
sion cost of 1. Thus, any algorithm designed for the HHN 
can be executed on a binary hypercube of the same size 
with at most twice the degradation in time performance. 
This is one more affirmation of the usefulness of the rich 
architectural characteristics of the hypercube. Thus, we 
believe that as hardware cost of massively parallel systems 
goes down, we will witness the popularity of the hyper- 
cube more than ever before. 
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